TS-7680 kernel compile guide

From embeddedTS Manuals
Revision as of 14:37, 16 September 2016 by Kris (talk | contribs) (Fixed typo)

For adding new support to the kernel, or recompiling with more specific options you will need to have an x86 compatible Linux host available that can handle the cross compiling. Compiling the kernel on the board is not supported or recommended. Before building the kernel you will need to install a few support libraries on your workstation:

Prerequisites

All systems:

Download and unpack the cross compiler

wget ftp://ftp.embeddedarm.com/ts-arm-sbc/ts-7680-linux/cross-toolchains/imx28-cross-glibc.tar.bz2
tar xvf imx28-cross-glibc.tar.bz2 -C /path/to/folder/

/path/to/folder can be any directory so long as the current user has permissions to write to it. Remember this path as its used later during the kernel build procedure.


RHEL/Fedora/CentOS:

yum install ncurses-devel ncurses
yum groupinstall "Development Tools" "Development Libraries"


Ubuntu/Debian:

sudo apt-get install build-essential libncurses5-dev libncursesw5-dev git u-boot-tools


If you are on a 64-bit system, then 32-bit libraries will be required for the toolchain, for older Debian and Ubuntu distrubutions use the command:

sudo apt-get install ia32-libs

On newer distributions with Multiarch support:

sudo dpkg --add-architecture i386
sudo apt-get update
sudo apt-get install libc6-dev:i386 zlib1g-dev:i386


For other distributions, please refer to their documentation to find equivalent tools.

Download sources and configure

git clone https://github.com/embeddedarm/linux-3.14.28-imx28.git
cd linux-3.14.28-imx28/

# These next commands set up some necessary environment variables
export ARCH=arm
export CROSS_COMPILE=/path/to/folder/arm-fsl-linux-gnueabi/bin/arm-linux-
export LOADADDR=0x40008000

# This sets up the default configuration that we ship with
make ts76xx_defconfig

Once you have the configuration ready you can make your changes to the kernel. Commonly a reason for recompiling is to add support that was not built into the standard image's kernel. You can get a menu to browse available options by running:

make menuconfig

You can use the "/" key to search for specific terms through the kernel.

Build the kernel

Once you have it configured you can begin building the kernel. This usually takes about 5-10 minutes. This group of commands will also output a uImage file used by U-Boot on the TS-7680.

make && make uImage && make modules

We recommend running 'make' with the -jX argument, where X is the number of CPU cores+1 present on the build machine. This will greatly increase build speed.

Install the kernel/initramfs, headers, and modules

Next you need to install the kernel and modules to the SD card. We provide a simple script to copy the kernel uImage file, kernel modules, and headers to the SD card to update everything at once.

For example, if your workstation's SD card is /dev/mmcblk0:

./install_hdr_mod mmcblk0p2


If your workstation's SD card is /dev/sdc:

./install_hdr_mod sdc2