TS-DIO64

From embeddedTS Manuals
Revision as of 13:05, 23 April 2013 by Mpeters (talk | contribs) (→‎I/O Address Selection: Fixed misleading address information about the TS-7000 series (which lead TS-7800 customers to use the incorrect address).)
TS-DIO64
TS-DIO64.jpg
Product Page
Documents
Schematic
Mechanical

Overview

The TS-DIO64 is an 8-bit PC/104 (standard format) peripheral board that provides 64 digital I/O points (32 inputs plus 32 outputs) through two 34-pin locking connectors that are compatible with ribbon cables. Up to 4 TS-DIO64 boards may be installed into a single system, enabling up to 256 DIO points (128 inputs plus 128 outputs).

The optional battery-backed SRAM is decoded in ISA memory space at a location determined by the SRAM control register (see Register Map).

Note: The Battery-backed SRAM option is only designed to work with the TS-7000 series SBC's (TS-ARM products only).

LEDs

The on-board red LED indicates the Lithium battery health. Typical lifetime of the battery is over 10 years. When the red LED is ON, the battery needs replacement, but this does not mean that the battery-backed RAM contents are corrupted. The battery can be purchased from Digikey, part number #P340-ND (Panasonic manufacturer part number is #CR2450).

The on-board green LED is an SRAM activity indicator. It pulses during read/write activity on the PC/104 bus.

I/O Address Selection

I/O Address JP1 JP2
0x100 Off Off
0x110 On Off
0x120 Off On
0x130 On On
Note: PC104 base address space for TS ARM SBC is not fixed at 0x0000. Please refer to your SBC documentation for the correct 8 or 16 bit access page base addresses for PC104.

Register Map

The TS-DIO64 uses 16 registers of 8-bits each (16 bytes total) which appear at the jumpered I/O base address. All input and output DIO registers are initialized at power up or system reset to zero by default.

Address Bits Access Description
BASE + 0x0 7:0 Read Only Board identifier (returns 0xA4)
BASE + 0x1 7:5 Read Only Reserved
4 Read Only SRAM option present (1 = on)
3:0 Read Only PLD Revision (1=REVA)
BASE + 0x2 7:5 Read/Write Reserved
4 Read/Write Use SRAM in memory space (1 = enabled)
3:2 Read/Write SRAM memory address decode
 0 = 0x0
 1 = 0x20_0000
 2 = 0x30_0000
1 Read Only Battery status (1 = ok, 0 = bad)
0 Read Only External power status (1 = on)
BASE + 0x3 7:0 Read Only Reserved
BASE + 0x4 7:0 Read/Write Output pins 1:8
BASE + 0x5 7:0 Read/Write Output pins 9:16
BASE + 0x6 7:0 Read/Write Output pins 17:24
BASE + 0x7 7:0 Read/Write Output pins 25:32
BASE + 0x8 7:0 Read Only Input pins 1:8
BASE + 0x9 7:0 Read Only Input pins 9:16
BASE + 0xa 7:0 Read Only Input pins 17:24
BASE + 0xb 7:0 Read Only Input pins 25:32

Connectors

Input Connector

On the 34-pin input connector, pins 1 to 32 are used for 32 total digital inputs. Pin 33 is fused 5V and the current is limited with a PolyFuse to 750 mA. Pin 34 is ground. Any voltage above 3.0 volts on the input pins will return a logic "1", while any voltage below 1.2 volts will return a logic "0". Each input can be driven from 0 to +30V, and all inputs have a 4.7K ohm resistor pull-up to 5V.

The input connector will follow this pinout:

33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1
34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Note: See the white dot, or the square pad on the bottom of the PCB to find pin 1.

Output Connectors

On the 34-pin output connector, pins 1 to 32 are used for 32 total digital outputs. Pin 33 is clamp voltage and pin 34 is ground. 22 outputs (pins 1 to 22) can sink 200 mA, while 10 outputs (pins 23 to 32) can sink 400 mA. These can be mounted in parallel to get much higher current drive. All outputs pins can sink up to 40V loads.

Writing a logic "1" to the output register bits will turn on the sink darlington transistor, forcing the output to below 1.2V. Writing a logic "0" will turn off the sink darlington transistor, and the output will be floating (not forced high). All output registers are initialized to zero at power up or system reset, which means that all outputs are turned off by default (not sinking current).

Note: The clamp pin should be connected to the highest voltage being used for loads. For example, if the outputs are driving 24V solenoids and 12V relays, then pin 33 should be connected to the 24V power supply. This will protect the output transistors from reverse EMF "transients" that may exceed 40V if the clamp pin was not connected to 24V.

The output connector will follow this pinout:

33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1
34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Note: See the white dot, or the square pad on the bottom of the PCB to find pin 1.